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In the present paper magnetohydrodynamic models are employed

to investigate the stability of an inhomogeneous magnetic piasma
with respect to perturbations in which the electric field may be re-
garded as a potential field (ot E » 0). A hydrodynamic model,
actually an extension of the well-known Chew-Goldberger-Low model
[17, is used to investigate motions transverse to a strong magnetic
field in a collisionless plasma, The total viscous stress tensor is given;
this includes, together with "magnetic viscosity,” the so-called
“inertial viscosity, "

Ordinary two-fluid hydrodynamics is used in the case of strong
collisions v = w. It is shown that the collisional viscosity leads to
*flute"-type instability in the case when, collisions being neglected,
the “flute™ mode is stabilized by a finite Larmor radius. A treatment
is also given of the case when epithermal high-frequency oscillations
(not leading immediately to anomalous diffusion) cause instability

in the low-frequency (drift) oscillations in a manner similar to the
"collisional®™ electron viscosity, leading to anomalous diffusion.

NOTATION

f—particle distribution function; Ey~electric field component;
Hy—magnetic field; p~density; V—particle velocity; e—charge; m,
M=electron and ion mass; Qj, Q¢—ion and electron cyclotron fre-
quencies; Tya—viscous stress tensor; P—pressure; ri—Larmor radius;
P g=—pressure tensor; t—iime; w~frequency; T--temperature; v—
collision frequency; 7—collision time; j—current density; wj, We™
ion and electron drift frequencies; ky, ky, ky—wave-vector com-
ponents; ng—particle density; g-acceleration due to gravity.

It is well known that the magnetohydrodynamic model for des-
cribing a plasma is valid of the particle free path length is much
less than the dimension over which the macro-quantities vary, and
also that v >> w, where v is the collision frequency, w is the "fre-
quency” of the process (w ~ 1/t,, and tg is the characteristic time
of the process), The hydrodynamic model is suitable for describing
motions across the magnetic field in the case where v « w in the
presence of strong magnetic fields,

§1. We shall consider how a system of hydrodynamic
equations for the motion of a plasma may be obtained
when collisions are entirely neglected.

To obtain the system of magnetohydrodynamic
equations it is convenient to use Grad's method of
moments [2]. The kinetic equation integrated with
respect to longitudinal (parallel to the magnetic field)
random velocities v, has the form
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Here M is the ion mass, Q; is the ion cyclotron
frequency, v is the random part of the particle
velocity, V is the mass velocity of the particles (so
that u = v + V is the total velocity of the particles);

h is a unit vector in the direction of the magnetic
field Hy; the remaining symbols are those in general
use; a is an index taking values %, y. By the usual
path we obtain from (1.1) a system of equations for
moments up to and including the third:
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Here p is the pressure; Fyg is the ion cyclotron
frequency, 6, 8 is Kronecker's symbol; 7, 8 is the
viscous stress tensor. We note that
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Using the equations which have been given it is
not difficult to establish that the adiabatic exponent
for the given motion y = 2 (see also [1]).

For the case 1°/t,<€1, r°/L ¢ 1 (z° is the time of
revolution around the Larmor circumference, r°is
its radius, L and t; are the characteristic spatial and
time parameters of t.he problem), Soz,B'y and Qaﬁy&
may be represented in the form
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Using (1.7), equations (1.4) and (1.6) may be
transcribed as follows:
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Retaining linear terms in (1.8) for perturbations
of quantities of the form exp(iwt), we obtain an ex-
pression for the viscous stress tensor by means of

an expansion in w/Q; < 1
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Here T is the temperature, p the density.

In (1.9) terms of the first order in w/€ correspond
to the expressions for the "magnetic" viscosity ob-
tained in {3].

The following term describes the so called "in-
ertial" viscosity. We note that the expression for
the viscous stress tensor in [3] does not have a
limiting transition to the case vj — 0 (v; is the ion-
ion collision frequency). For use in what follows we
shall write out these expressions in the "collision-
less™ case for Qir > 1 in a coordinate system with
its z axis parallel to the magnetic field Hy [3]
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§2. We shall investigate the "flute" instability in two
limiting cases: for collisonless plasmas and for a
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high collision frequency. In the first case, using
equations (1.2), (1.3), (1.5), (1.9), (1.10), taking
into account the gravitational potential, the quasi-
neutrality of the plasma and the potentiality of the
respective disturbances

divj =0, rot E =0, (2.1)

we may obtain, retaining terms up to (w/ Q4)? inclu-
sive, the following expression for perturbations of
the type ¢ (z) exp (imt + ikr) (the plasma is assumed
to be inhomogeneous in the x direction);
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Equation (2.2) is written in the laboratory frame
of reference with the z axis parallel to the magnetic
field. Here g is the acceleration due to gravity, w;
is the ion drift frequency, ny is the unperturbed
density, r°is the ion Larmor radius, and the prime
dash denotes differentiation with respect to x.
We shall investigate the solutions of (2.2) on the
assumption that ©2>gn,’ / n,, i.e., when solutions
of the second~order differential equation do not lead
to instability. The presence of zeros of Uy (U, is the
coefficient of the second derivative), may lead, as is
well known {4], to the complication of all four solu-
tions and to the appearance of new dispersion pro-
perties of the plasma. For sufficiently short waves
(A= r°) it is clear from (2.2), that we shall obtain a
qualitatively valid result by neglecting the ~ ¢ term
and analyzing the solutions of U, = 0. Here we see
that as distinct from [4] unstable solutions are absent
for two-dimensional motion in a purely "collisionless"
situation. We note that if w:?<g gk,, i.e., the increm-
ents of the unstable solution are small, then the points
Uy =~ 0 lie in the neighborhood of the real axis. In
this case the solutions become complicated and the
integral contribution due to the k, ~ YalU, mode for
finite solutions may turn out to be the most important,
which leads to a better stability criterion

w2 > ghky [ a.

In order to obtain an equation in the case of strong
collisions we make use of relations (1.2), (1.3), (1.11)
in a gravitational field. For perturbations like
@ () exp (iof + ikyy) we obtain for Qi >» 1
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Here »; is the ion-ion collision frequency.
When the effect of the fourth derivative is insig-
nificant, we obtain a qualitatively correct result
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for finite solutions from the condition Uy =0, as is
well known [4] (U, is the coefficient of @), giving

w* — o (o 4 Pvi) — ghy == 0. (2.4)

We see that (2.4) also contains unstable solutions
even in the case wi? > gn}/ng when flute instabilities
are stabilized in the absence of collisions. Moreover,
when w;i? » gk, we have
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It is important to note that equation (2.3) will
contain unstable solutions if another instability,
instead of the ususal collisions, leads to viscous
dissipation, which will lead formally to at least
another expression for the "viscosity" coefficient.
(As is now well known, A. V. Timofeev and D. L.
Ryutov have also called attention to the effect of
collective viscosity in the case of flute instabilities.)
The presence of zeros of U; makes it necessary to
take the fourth derivative into account, which lessens
the increment of the given instability, as can easily
be seen.

§3. It has been partially demonstrated in the fore-
going section that taking ion-ion collisions into account
may lead {o the development of flute instabilities even
under conditions when the ion Larmor radius is large
{wy2 > gky) It is well known that taking dissipative
effects into account in a series of other cases (see,
for example, [5—-7]) may lead to the appearance of
new instabilities. Thus electron-ion friction leads to
the development of the drift-dissipation instability,
giving rise to Bohm [5] diffusion. All these instabil-
ities due to taking collisions into account are not very
dangerous in a high-temperature system when the
collision frequency falls. It must be kept in mind,
however, that dissipative effects may arise on account
of certain other "seeding" instabilities, and then,
even in the absence of the usual collisions, generally
speaking conditions are created for the propagation

of dissipative instabilities. The possibility of such

an effect has previously been noted by other authors.*

Her we shall consider the effect of high-frequency
oscillations on the development of the drift-dissipa-
tive instability.

First of all we draw attention to the fact that the
"longitudinal® electron viscosity leads to a destabili-
zation of the plasma in drift waves similar to electron-
ion friction, Actually,

— ik Ty — engel; - MAv — mngevorve =0 (3.1)

from the equation for longitudinal electron motion,
where k, is the wave vector along z, e, the charge,

nye the unperturbed electron density, and vej the
effective electron~ion collision frequency. It is clear

* G, M. Zaslavskii, S. 5. Moiseev, and R. A. Sag-
deev, Second All-Union Congress of Mechanics,
Moscow, January 1964,
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that the term T)Auv is analogous to the term charac-
terizing ion-electron friction, and conseqguently

exerts a destabilizing effect. However, under the
conditions of applicability of ordinary hydrodynamics
the viscous term in (A, /4,;)? is less than the electron-
ion friction on account of pair collisions, and is thus
insignificant. Let us now consider collisions to be
absent, and let high-frequency electron oscillations,
caused by beam instability, be present and lead to

a certain effective "viscosity" of the electron gas
(interaction with such oscillations is known to be
equivalent to electron-electron collisions [8]). By

way of example, we shall consider the beam in-
stability investigated in [9]. The quasilinear equation
for the beam has the form
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where f is the particle distribution function for the
beam, |E.|is the amplitude of field pulsations, ac-
cording to [9] of order of magnitude
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Here ng is the unperturbed beam density, wy is the
plasma oscillation frequency, Njg is the unperturbed
plasma electron density, 7, is the time for establish-
ing a "plateau" in the function f.

Nonlinear wave interactions are still insignificant
in the case where ny « Nyg, and we may employ a
system of hydrodynamical equations for the plasma
electrons (see [9]).

In order to evaluate the influence of high-frequency
oscillations on the drift-dissipative instability, we
must in fact calculate the effective T (time) of electron
collisions in the beam. From (3.2) and (3.3) we obtain
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for 7~ 1.

Here wy* is the plasma frequency for the beam
density. Expression {3.4) is valid when the resonance
electrons have velocities of the order of the mean
thermal velocities.

Further, for cases of low-frequency potential
perturbations exp (it --ikyy + ik.z), we make use of
the following relations.

The equation of motion of cold ions across the
magnetic field

MNg 8 = eNyE| + Ny [vie Bl . (3.5)
The equation of motion of the beam electrons
— tkanTy — enylly — klPngl v = 0.
The condition of quasi-neutrality
div j =0. (3.7)

We may then obtain the dispersion equation (motion)
of the plasma electrons along Hy:
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Here n, Ne’ N; are the perturbed density of beam
electrons, plasma electron and ions, respectively,
T is the temperature, v, is the electron cyclotron
frequency, vg is the "electron™ collision frequency,
Mg is the electron free path (Ag ~ v7,v is the thermal
velocity of electrons), we is the electron drift fre—
quency, Nje is the derivative of Nye with respect to
X (the direction of the inhomogeneity).

The condition that the Landau damping contribution
for electrons be small is of the form

w2 0N no
Fot < Oh2hE oy (3.9)

Then for of > 0., o.*n,/ No) > 0. (the last
inequality is the condition of applicability of hydro-
dynamics to the drift motions of the beam electrons),
we obtain
©k2AGENo, N
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We note that the increment does not depend on kg,
and so the crossing of lines of force of the magnetic
field does not exert an immediate influence on the
development of instability within the limits of ap-
plicability of the given result.

Thus high-frequency oscillations which do not
lead directly to diffusion may still act as an indirect
cause of diffusion at low-frequency oscillations.

The authors are grateful to A. A. Galeev for
valuable discussion.
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